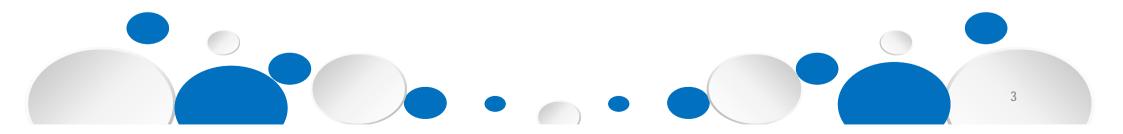


运管理部TQM学习系列1 IE七大改善手法培训

2020年3月



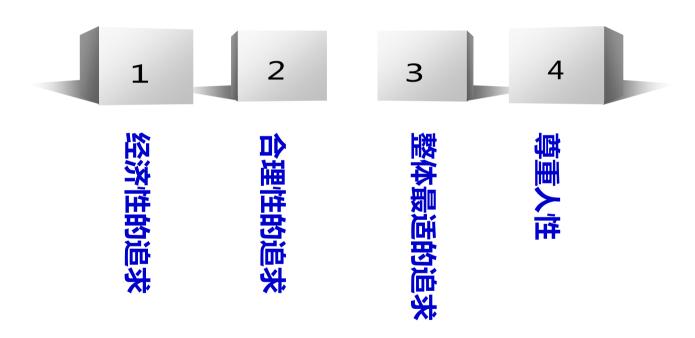
1 IE基本知识概述

2 IE七大手法的应用

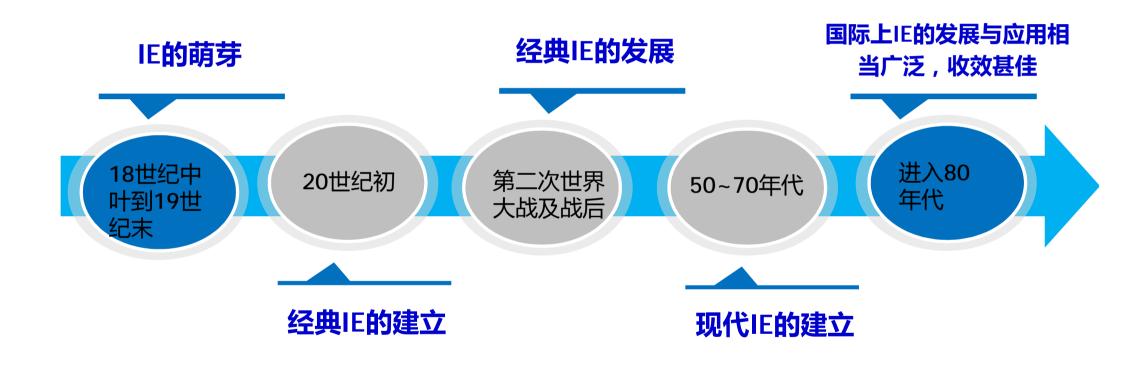
IE基本知识概述

1-1 IE基本观念

IE定义:由设计、改善或设定人、材料、设备的综合性系统即工作系统,以谋求提高生产力的技术。


何谓I E(工业工程)

- 1.有关设计、控制与管理一个由人员、设备、物料、资料、资本与知识等整合起来的(生产)系统。
- 2.所有能够用最少的资源而生产正确又及时的产品的技术。
- 3.找寻做每件事情的最佳方法。
- 4.为了赚钱所需要的工程学。
- 5.用来调查、分析与检讨改善案的手法。


1-2 IE的理念

1-3 IE的发展历程

1-4 IE的工作内容

- Ø 1.作业标准与标准时间的设定
- Ø 2.工程设计(工具、设备、加工方法、装备方法等)
- Ø 3.制品设计(价值工程\分析,成本数据之作成等)
- Ø 4.生产、存量、品质、成本等管理体系的设计
- Ø 5.工厂布置、设备布置、物料搬运之设计
- Ø 6.设备投资方案之计划与分析
- Ø 7.生产方式、生产涂程之设计
- Ø 8.职务分析与工作评价
- Ø 9.绩效管理制度之设计与营运
- Ø 10.奖工制度的设计与营运
- Ø 11.规划教育训练方案并实施
- Ø 12. 工业安全及有关事项

IE七大手法的应用

IE七大手法

- 一、工程分析(程序分析)
- 二、连合作业分析
- 三、稼动分析(作业抽样)
- 四、动作研究(动作经济原则)
- 五、搬运工程分析
- 六、生产线平衡分析
- 七、设施规划与改善

定义:调查分析生产过程和作业方法,以及把握问题点进行改善。

从整个制程的轮廓着眼,其研究单位为各个操作,将各操作运用删除、合并。 重组与简化之技巧,予以合理化。如果有一项操作在整个过程中为不必要或者重复, 则立即予以删除,不必要再做细微之动作分析,否则即为研究浪费。

工程分析之手法

操作程序图(OPC)

流程程序图 (FPC)

线图(FD)

1、使用符号

程序	记号	意义
加工		加工的意思就是将原料、材料、零件或制品依照作业目的,受到生理的或化学业的变化的状态,或为下一程序进行准备的状态。
搬运		表示将原料、材料、零件或制品从某一位置移动到另一位置时的发生的状态。记号大小为加工记号直径的1/2~1/3。
储存		表示依计划将原料、材料、零件或制品储存过程的状态。
停滯		表示违反计划而使原料、材料、零件或制品发生停滞的状态。
数量检查		衡量原料、材料、零件或制品的量或个数,其结果与基准比较,以获知差异的过程。
品质检查	\Diamond	试验原料、材料、零件或制品的品质特性,其结果与基准比较,以判定批的合格、不合格,或制品的不良、不良的过程。

2、操作程序图(OPC)

为显示产品的整个制造程序的工程概括图,又称概要程序图。以分析操作及检验之后顺序的重点,并对于原材料,另做投入制成的时点,及操作所需时间均标明,惟不包括物料之"搬运"、"停滞"及存储之情况。操作程序图可以掌握从原材料至产品的整个制程,为分析及改善的主要基本"工具"。

3、流程程序图(FPC)

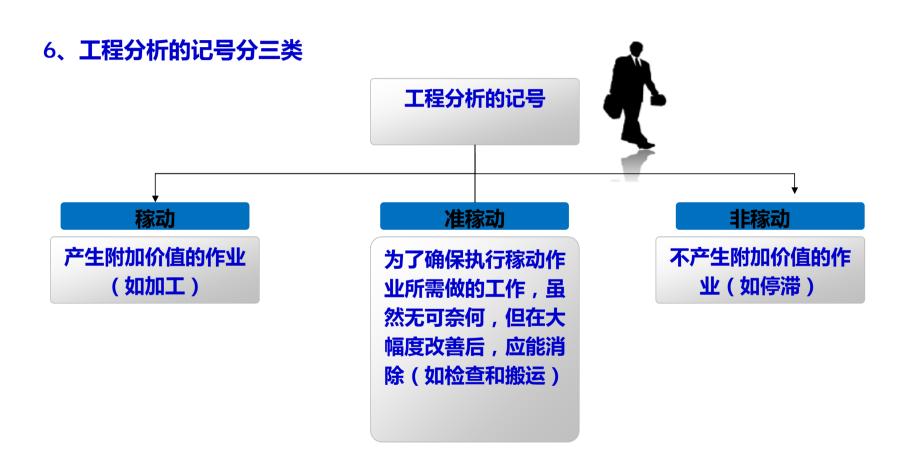
对每一主要另件或材料单独作图,使每件之搬运,存储及检验均可独立研究,特别用以分析其搬运距离,延迟,存储时间等隐藏成本之浪费。如果这些"非生产性"的时间显著,即在提醒分析人员,应寻求改良之道。

种类:材料流程程序图:说明制程中材料或另件被处理的步骤。(产品工程分析)

人员流程程序图:指出操作人员至所有一连串的动作。(作业者工程分析)

4、线图

线图通常是以比例缩尺绘制工厂建筑或工厂布置的平面图,最好使用方格眼纸,将机器、工作地点等,依其正确相关位置,——绘制与其上,并将流程程序图上 所有动入,以线示或流程图号表示,最主要者为物料或人员的流经路线,依流程程 序图所记录的次序的方向用直线或丝线表示。


5、工程分析步骤

定义:调查分析生产工程与作业方法,以及把握问题点做改善。

步骤:

- 1.从原材料至产品为止依工程的程序绘制作业程序图
- 2.用工程记号做成流动线图
- 3.统计各种工程记号的时间做成总括表
- 4.由分析结果抽出问题点
- 5.改善时, 先除去非稼动, 再来清除准稼动
- 6.最后对于稼动作业,可以再想办法缩短时间

一般生产作业,以人或机械的种种组合较多,其组合不一定是一位作业者和单数机械,而是由多数的人,多数的机械所组合。

为使此连合状态的作业更有效的进行,将各个的关联,由时间的经过加以分析, 改善为更有效的方法,此研究为连合作业分析。

连合作业分析种类

- 1.单独作业者====单数机械 2.单独作业者====多数机械 3.多数作业者====单数机械 4.多数作业者====多数机械
- 5.作业者==作业者(组作业)==组作业分析

人机分析步骤:调查分析作业者与机械作业内容与所需时间,以及把握问题点做改善。

- 1.决定目的与对象
- 2.决定时期与方法
- 3.实施观测,依照各观测对象的作业顺序,每一要素加以分析记录
- 4.汇集连合作业分析结果,汇集作业应以:连合作业分析图表记号 (如图2.1)
- 5.由分析结果抽出问题点改善,
- 6.改善时, 宜应用5W1H或ECRS方法改善(如图2.2、图 2.3)。

图2.1 连合作业分析图表记号

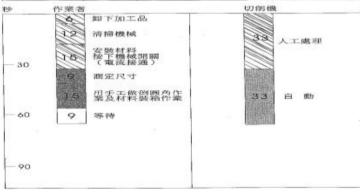
容

品,名,想以造动而得

	作	业者		机	械
记号	作业名	内 容	记号	作业名	内
	单	在时间上与机械或其他作业者无关的作业		自	与作业者 的机械(
	独	1531.534.554.115		动	///////////////////////////////////////
	连	与机械或其他作业者		人	由作业者
		一起作业。其中的一		エ	装、拆货
	合	方在支配时间的作业		处	是其时间
				理	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	等	因机械或其他作业者	П	停	因作业者
		作业中。因而发生的			机械的包
	待	等待		止	

图2.2 连合作业分析图表

92.5.5


	Canal Local			
DC#84	25	金件 拉丁帕订		福見3明 音
音は严雪	1	第一工場		别似利用于作时
イ 生984年	NY .	Α .		包括有效
作樂比	285	B等性時(利約)	96	作業比認
.VAL SIE	3	24	26	論動
郷合		33	37	于處理
等特	-	33	37	\$P.11:
全部	-	90	100	台計
69-	作業者			切り付け
— 30 — 60	15	測定尺寸 用于工做人 清掃機械 安裝下電流 等待	对圆角作 材料箱	24

SP-2500

图2.3 连合作业分析图表

連合作業分析圖表 (司女(明)(後)

		4,000,00	a second			
品名製造號機	SP-2	500	都知到11日	92.5.	15	
工程名	食性も刀	州	9051, 3740 mm	13	-	
省51515	第一工場		(20190)89780	00 f	5 EU	
作業者	Α		886,645	No.1	10	
作業比率	昨年刊司(承少)	96	作業比比率	四等目目(毛沙)	96	
397.598	24	36	白 銀カ	33	50	
練合	33	50	人工機理	33	50	
等件件	9	14	69°1E	0	0	
合計	66	100	合計	90	100	

2-3 稼动分析(作业抽样)

定义:调查人员或机械的作业,定量的把握其稼动,准稼动以及非稼动的组成比率。

步骤:

- 1.将作业分化其内容,并归为三种稼动情况
- 2.决定作业抽样的观测次数
- 3.反复观测该作业,并记录分化作业的时间
- 4.统计抽样结果,将该作业的稼动状况以圆饼图表示,
- 5.若非稼动的比率过高,则加强改善。

2-3 稼动分析(作业抽样)

1、作业者的工作要素

	工作分类	要素内容	19	
生血	主体作业	材料、部品的变形、变质等,会 直接影响形成价值的作业要素	机械职场的要素(例)	装配职场的要素(例)
, 的、有规	厂主 作 业		以操作方向盘、杆所作的加 工	安装部品、锁固螺丝钉、 焊锡、装箱、捆包等。
规则的	附带作业	在主作业前后,有规则地发生的 作业要素	材料的固定、卸下、操作机 械(起动、停止等)	材料、部品、工具的确保
非生产	宽 放 作业宽放	虽属作业上所需要素,但在每个 作业会固定,而且不规则、偶发 地发生。	加油、处理切渣、机械、工 具之修整、材料、产品之搬 运,步行中	
产	2007200000000	为解决生理上的需求所需要素	上厕、饮水、擦汗、取暖	
的、不	职场宽放 - 人的宽放	由于管理上的因素、职场共通, 且不规则偶发地发生	机械障・材料・部品供应不 业指导、商洽	継所致之等,事务记录、作
规则	_(上厕宽故) —疲劳宽放	为回复由于作业所致之疲劳所需 的要素	朴偿在高温、高湿环境中作业	2的休息
的要素	其他要素	由于作业者个人的原因所发生的 非作业要素评价是依发生程度而 异	闲谈、休息、闲蹓跶	

2、机械的工作要素

	工作分类	要素内容
有规则的要素	奪动 实 动 □空转、空送	将材料、部品实务给予加工的状态 机械虽在动,但不在加工材料、部品的 状态。移动机头、MC的更换刀具等
非生产的	停止 暂 动 停 止 (计画上的停止)	材料、部品的装、卸、机械修整,作业者不在,材料、部品供应不断,自动停止状态等,作业中的停止 因无生产预定所致的停止。并非生产系统上的原因,而是由于生产计划、承购内容变更,日程计画、管理上的原因所致之停止。

定义:把人员作业的动作分解成最小的基本动素组成,记录并分析该作业的 所有动素次序并分类,去除没有价值的动素。

步骤:

- 1.把人员作业的动作细分成18个基本动素并归类为三大类(必要的动素、延误第一类的动素、非工作必要的动素)
- 2.调查记录该作业各动素的组合次序并分类
- 3.将不必要的动素设法去除。

2-4

动作研究

动作分析进行方法

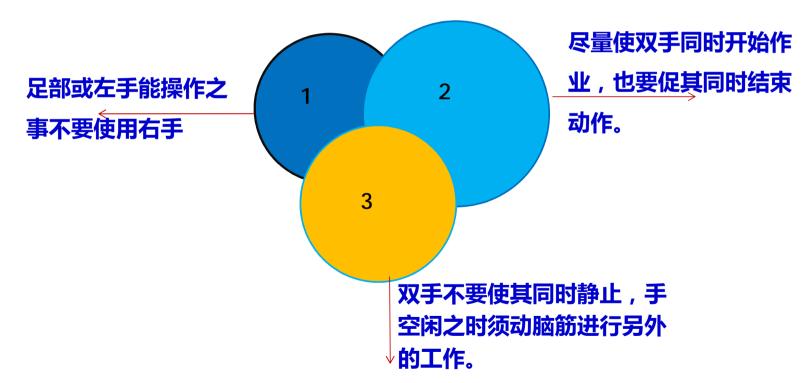
1.双手作业分析

是将作业的双手之顺序、方法,使用"作业"、"移动"、"保持"、"等待"记号加以分类,来分析、两者的关联性之手法。

2.微动作分析法

使用各该动作的基本最小动素单位记号,将作业者的更详细、入微的手脚与眼睛之动作 加以分类、进行分析之手法。

记号	名称	说明	物品
	作业	手在作业的状态	人二
	移动	伸手或在搬运东西的状态	会动
	保持	为了工作拿着东西的状态	不会計
	等待	双手不作任何事的状态	不会动


动作经济原则是由三种的基本原则所构成,宗旨均是基于为了具体改善要点之 各基本原则为主题。

1、动作能活用的原则

大部份的人都是右撇子,全部使用右手,但若连左手也能使用为最佳。又足部如能应付, 最好足部的动作能可以活用。凡是具有进动作能力的部份,不管何部位都希望全面活用。

2、动作量节约的原则

徒劳的作为不但浪费时间,也需多出的空间。若能减少运动量,那么空间亦能减少,时间也就可缩短而完成。

尽量使用小的运动来完成。躯体的运动由腕部的运动、前腕的运动、前腕的运动、有脑的运动依序进行从而运动量会减少

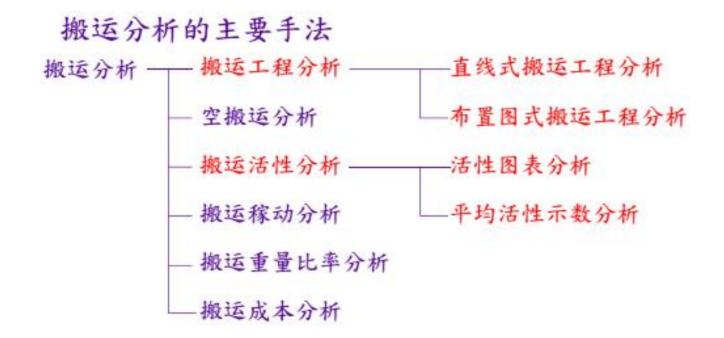
1 2 3 4 5

材料或器具,于伸手能及的范围内,应尽量设法放置在近手边。 又以小单元动作的进行顺序,放 置的场所也要决定设在便利之处。 前项的作业终了,要置于在成品 的近旁,依此顺序堆置作业应用 的物品。

两个以上的工具尽量使其结合成一体,材料或零件应用易拿取的容器。以减少其动作量

3、动作经济原则

- 1.双手同时开始与结束。
- 2.双手除休息时间外,不应闲置。
- 3.双臂应同时做相反且对称的动作。
- 4.用最简单的手与身体动作来完成工作。
- 5.用动量帮助工作,使体力消耗最少。
- 6.平滑且连续的动作优于直线且断续的动作。
- 7.弹道式动作优于限制或控制的动作。
- 8.工作尽量安排至简单且合乎自然的节奏。
- 9.应尽量减少眼睛的专注,且应尽可能靠近。
- 10.工具或物料必须有固定的放置地点。
- 11.工具、物料和控制器应尽量靠近使用地点。
- 12.运用重力传递物料到使用地点。



- 3、动作经济原则
- 13.尽可能利用墜送搬运。
- 14.尽可能将工具和物料按动作的顺序安置。
- 15.照明应充足。
- 16.安排工作场所和椅子的高度,使得站立或坐工作可轻易地变换换。
- 17.提供给工作者型式和高度适当的椅子。
- 18.所有的工作应利用夹、治具,若是以脚操纵的工具,双手应尽可能的释放。
- 19.两种或是多种的工具应尽可能的组合在一起。
- 20.工具或是物料应尽可能的预先定位。
- 21.当每个手指都在从事某些特定的移动 , 诸如打字 , 每只手指的负荷应协 调及均匀。
- 22.升降器、手推车和其他控制器应尽可能使操作者不需变动身体姿势,以快 速和简单为原则。

搬运工程分析

定义:调查分析搬运作业,以及把握问题点做改善。

搬运工程分析

图5.1 搬运基本记号

记号	名称	说 明	物品
	移动	物品的位置的变化	۸ = L
	处理	物品的支持法的变化	会动
0	加工	物品的形状的变化与 检查	不会
\triangle	停滞	对于物品不会发生变 化	动

图5.3 活性示数

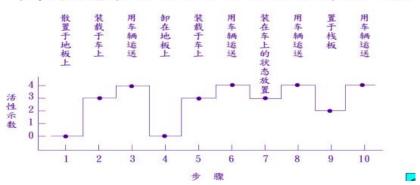
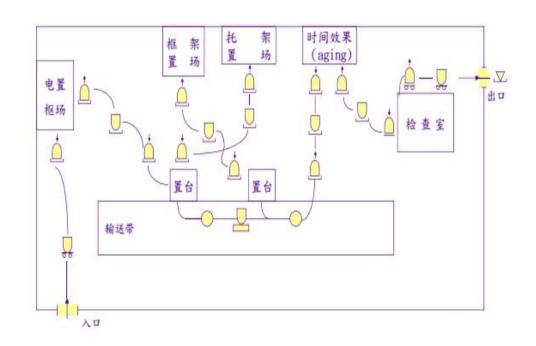
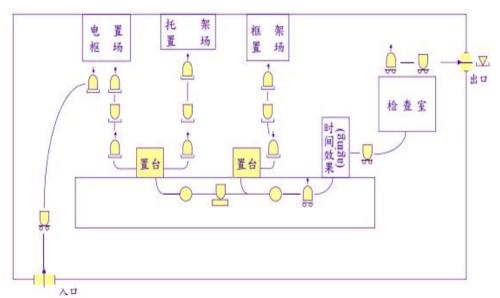

状 态	费工夫的说明	汇集	扶起	拿(举)起	拿(带)去	活性示数
散置于地板	汇集→扶起→举起→拿去	0	0	0	0	0
容器或捆束	扶起→举起→拿去(已举 起)	×	0	0	0	1
栈板或运动小架(Skid)	举起→拿去 (已举 起)	×	×	0	0	2
车 辆	拖去(不必举起)	×	×	×	0	3
在动的输送带	不必要(照原去)	×	×	×	×	4

图5.2 搬运台记号

记号	说 明	读方
5 <u>00 - 200</u>	散置于地面、台上等的状态	平
	整合于集装箱或捆束等的状态	箱
	装在栈板上的状态	枕
0 0	装在车上的状态	车
	被输送带或滑槽带动的状态	输送带

图5.4 搬运活性分析图


平均活性示数=(0 +3 +4 +0 +3 +4 +3 +4 +2 +4) /10 = 2.7


搬运工程分析

改善前的布置图式搬运工程分析图

改善后的布置图式搬运工程分析图

2-6 生产线平衡分析

定义:在连续化生产线上,各工程之间有固定的次序,为了避免等待与停顿的浪费,尽量使各工程的作业时间相等的分析。

步骤:

- 1.把各工程分成数个单位作业,并测定时间(如图6.1)
- 2.以各工程为横轴,时间为纵轴,画间距图(如图6.2)
- 3.计算生产线平衡效率与平衡损失(如图6.3)
- 4.把时间较长的工程挪出单位作业于相邻的短时间工程 , 并再画间距图(如图6.4)

生产线平衡分析

图6.1 轴产品各单位作业的时间测定

工程	軸(右	1 點)切削	同左	2 ,打孔	朝初	3 (左) (2月		同左	4 ,打孔	鍵譜	5 切削	6 研磨
單位作業	⑴車盤切削	(2) 磨邊	(3) 打 孔	⑷表面處理	(5) 車盤切削	6 軸心打孔	⑺表面處理	(8) 打 孔	(9) 表面處理	(10) 鍵溝切削	11除去毛邊	(12) 軸心研磨
淨作業時間 (秒)	25	30 5	38	13 5	30	40 5	4	27 3	5	26	5	33

图6.3 平衡效率与平衡损失

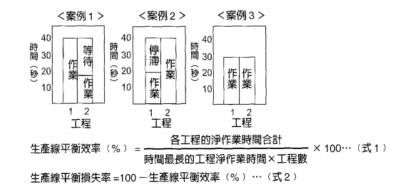


图6.2 改善前间距图

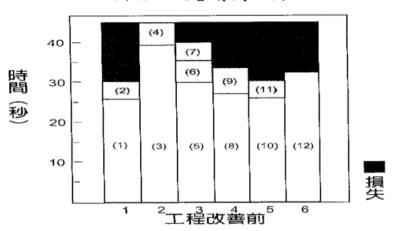
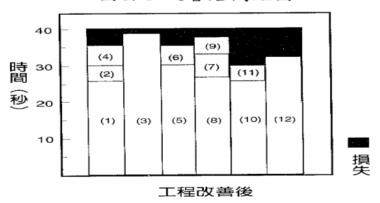
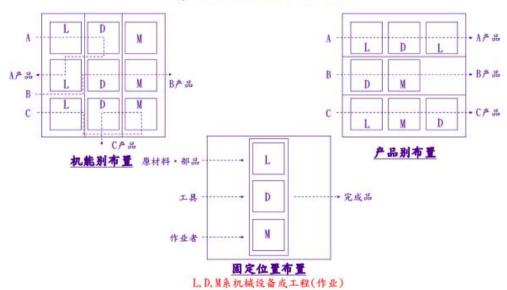



图6.4 改善后间距图



设施规划与改善

设备布置:设备布置(plant layout)系为使能以最经济(最适当)地生产原材料、部品或产品,而设计厂房、机器设备、原材料、作业者等布置之事。

布置的基本型

设施规划与改善

设施规划与改善步骤

定义:决定必要的设施并安置在最适当的位置,甚至包括设计工厂的规模与地点。

步骤:

- 1.先正确地把握产品(P)与生产量(Q)(如图7.1)
- 2.针对各类型产品做工程分析、路线工程分析、或从
- 至图等掌握物品流动强度(如图7.2)
- 3.决定各工作区的相互活动关系(如图7.3)
- 4.掉换工作区位置,以达总流动最短为原则(如图7.4)
- 5.估算各工作区的必要面积
- 6.画出等比例区域规划平面图(如图7.5)

2-7 设施规划与改善

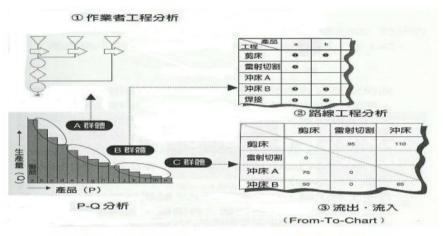
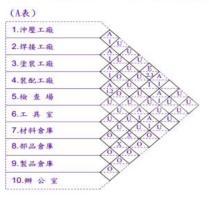
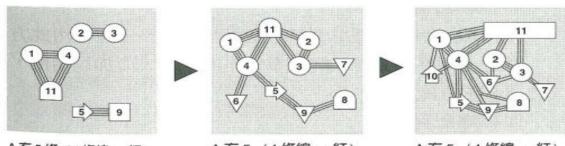



图7.3 活动相互关联图表 (例)


略号	近 接 性	线数
A	绝对必要	4条
Е	特别重要	3
I	重 要	2
0	普 通	1
U	不必要	0
X	不太好	线

(C表) 略号 物流上 品质上 管理上的方便 人与人的接触的必要性 情报连络的必要性 设备的共用 事务连络上

图7.1 P-0分析

图7.2 从至图

图7.4 找出最佳配置

A有5條 (4條線---紅)

A有5 (4條線---紅) E有6 (3條線---黃)

A有5 (4條線---紅) E有6 (3條線---黃) 1有8 (2條線---線)

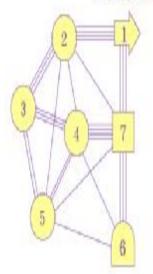
2-7 设施规划与改善

必要面积的设定

u1 计算法

细分成数个活动单元,算定各别的单元 面积,再加总起来。

u2 标准面积 法


参考预先所定的标准资料来设定面 积,但须充分了解标准资料的所有 内容。

u3 概略配置法

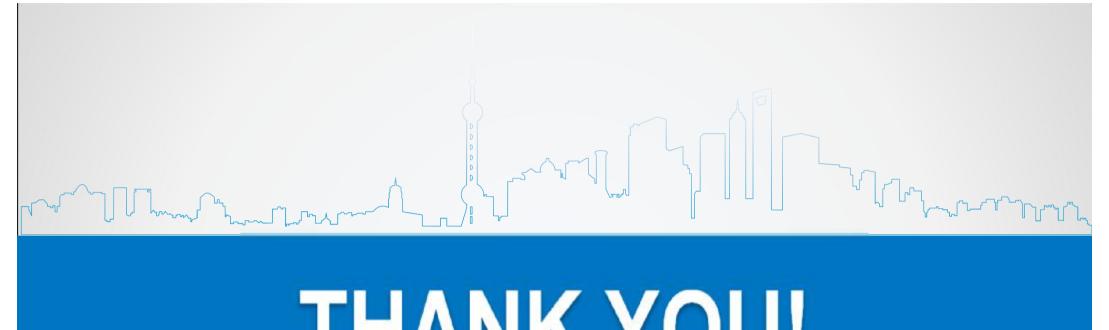

利用模型或缩尺图, 概略地加以 配置,以决定实际的面积

图7.5 设计等比例区域规划平面图

活动相互关联图表

记号	活动内容
0	作业场
	输送场
∇	储存场
	检查·试验场
0	服务内容
1	办公室等

THANK YOU!